Data Science Overview

  • Introduction to Data Science
  • Different Sectors using Data Science
  • Python vs R
  • What is the role of a Data Analyst
  • What is the role of a Data
  • Scientist
  • Opportunities in Data Science

Data Analysis Overview

  • Data Analysis Process
  • Knowledge Check
  • Exploratory Data Analysis
  • EDA - Quantitative Technique
  • Types of Variables
  • Types of Problems

Data Visualization Overview

  • Why Visualize everything ?
  • Importance of Visualization
  • Types of Visualization Strategies
  • Color Palettes
  • Types of Charts
  • When to Use Different Charts
  • Sub Plots
  • Plotting with Pandas
  • Matplotlib
  • Seaborn
  • Plotly - Advanced Data Visualization
  • Scientific Data Visualization
  • Driving Insights from Visualizations

Python Programming Language

  • History and Overview
  • Applications and Use Cases
  • Syntax, Comments, Variables
  • Data Types, Numbers, Casting
  • Strings, Booleans, Operators
  • Lists, Tuples
  • Sets, Dictionaries
  • Loops and Conditionals
  • Lambdas and Arrays
  • Classes and Objects
  • Inheritance
  • Iterators
  • Scope and Modules
  • Dates and Json
  • Regular Expressions
  • File Handling
  • Python for MongoDB
  • Python for MySQL
  • Quizzes

Numpy

  • Creating Numpy Arrays
  • Mathematical Functions
  • Subset, Slice, and Index
  • Manipulating Numpy Arrays
  • Join, Split, Resize etc.
  • Transpose, Reshape
  • Visualizing Numpy Arrays
  • Data Analysis with Numpy
  • Numpy Functions

Pandas

  • Introduction to DataFrame
  • DataFrame Operations
  • Pandas Functions
  • Plotting with Pandas
  • Advanced Pandas Trick
  • Exploratory Data Analysis
  • Data Ingestion and Inspection

Statistical Analysis

  • Introduction to Statistics
  • Mean, Mode, Standard Deviation
  • Scales and Measures
  • Basic Terms and Terminologies
  • Use Cases and Problems
  • Summarizing Distribution
  • Graphing Distribution
  • Univariate Data
  • Bivariate Data
  • Multivariate Data
  • Normal Distributions
  • Probability
  • Sampling Distributions
  • Advanced Graphs
  • Estimation
  • Hypothesis Testing
  • A/B Testing
  • Analysis of Variance
  • Standardization
  • Normalization
  • Box Cox Transformation
  • Cosine Similarity

Advanced Statistics

  • Bernoulli and Binomial Distribution
  • Chebyshev’s Inequality
  • Correlation vs Causation
  • Interquartile Range
  • Kernel Density Estimation
  • QQ Plot
  • Skewness
  • Resampling and Permutation test

Supervised Machine Learning

  • Introduction
  • Types of Supervised Techniques
  • Regression Analysis
    • Types of Regression Algorithms
    • Linear Regression
    • Logistic Regression
    • Lasso Regression
    • Ridge Regression
    • Elastic Net Regression
    • Metrics for Regression Analysis
  • Classification Analysis
    • Decision Trees
    • Random Forest
    • Support Vector Machines
    • K Nearest Neighbors
    • Naive Bayes Theorem
    • AdaBoost Classifier
    • Metrics for Classification

PROJECT 1: Breast Cancer Dataset


PROJECT 2: Employee Dataset


PROJECT 3: Black Friday Dataset

Enquiry Form

Other Related Courses

R Programming Online Training in Hyderabad India

R Programming Online Training in Hyderabad India

Read More
Data Science Online Training in Hyderabad India

Data Science Online Training in Hyderabad India

Read More
Data Visualization Online Training in Hyderabad India

Data Visualization Online Training in Hyderabad India

Read More
Machine Learning Online Training in Hyderabad India

Machine Learning Online Training in Hyderabad India

Read More
Python Online Training in Hyderabad India

Python Online Training in Hyderabad India

Read More